ERK activation is required for hydrostatic pressure-induced tensile changes in engineered articular cartilage.

نویسندگان

  • G D DuRaine
  • K A Athanasiou
چکیده

The objective of this study was to identify ERK 1/2 involvement in the changes in compressive and tensile mechanical properties associated with hydrostatic pressure treatment of self-assembled cartilage constructs. In study 1, ERK 1/2 phosphorylation was detected by immunoblot, following application of hydrostatic pressure (1 h of static 10 MPa) applied at days 10-14 of self-assembly culture. In study 2, ERK 1/2 activation was blocked during hydrostatic pressure application on days 10-14. With pharmacological inhibition of the ERK pathway by the MEK1/ERK inhibitor U0126 during hydrostatic pressure application on days 10-14, the increase in Young's modulus induced by hydrostatic pressure was blocked. Furthermore, this reduction in Young's modulus with U0126 treatment during hydrostatic pressure application corresponded to a decrease in total collagen expression. However, U0126 did not inhibit the increase in aggregate modulus or GAG induced by hydrostatic pressure. These findings demonstrate a link between hydrostatic pressure application, ERK signalling and changes in the biomechanical properties of a tissue-engineered construct.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular Na(+) and Ca(2+) modulation increases the tensile properties of developing engineered articular cartilage.

OBJECTIVE Significant collagen content and tensile properties are difficult to achieve in tissue-engineered articular cartilage. The aim of this study was to investigate whether treating developing tissue-engineered cartilage constructs with modulators of intracellular Na(+) or Ca(2+) could increase collagen concentration and construct tensile properties. METHODS Inhibitors of Na(+) ion trans...

متن کامل

Inducing articular cartilage phenotype in costochondral cells

INTRODUCTION Costochondral cells may be isolated with minimal donor site morbidity and are unaffected by pathologies of the diarthrodial joints. Identification of optimal exogenous stimuli will allow abundant and robust hyaline articular cartilage to be formed from this cell source. METHODS In a three factor, two level full factorial design, the effects of hydrostatic pressure (HP), transform...

متن کامل

Effects of temporal hydrostatic pressure on tissue-engineered bovine articular cartilage constructs.

The objective of this study was to determine the effects of temporal hydrostatic pressure (HP) on the properties of scaffoldless bovine articular cartilage constructs. The study was organized in three phases: First, a suitable control for HP application was identified. Second, 10 MPa static HP was applied at three different timepoints (6-10 days, 10-14 days, and 14-18 days) to identify a window...

متن کامل

P-70: The Effect of Hydrostatic Pressure on Parthenogenetic Activation of Mouse Oocytes Derived from In vitro Grown Ovarian Follicles

Background: Parthenogenesis is the production of an embryo from a female gamete in the absence of any contribution from a male gamete, with or without the eventual development into an adult. In vivo, mammalian parthenogenesis is a rare event. Parthenogenesis can be efficiently induced in vitro with a variety of mechanical, chemical, and electrical stimuli in several species. Hydrostatic pressur...

متن کامل

Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration.

Cartilage has a poor intrinsic healing response, and neither the innate healing response nor current clinical treatments can restore its function. Therefore, articular cartilage tissue engineering is a promising approach for the regeneration of damaged tissue. Because cartilage is exposed to mechanical forces during joint loading, many tissue engineering strategies use exogenous stimuli to enha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of tissue engineering and regenerative medicine

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 2015